YOLO-WAL: Fluid emission detection by Water-column Acoustics and a deep Learning-approach

YOLOv5-WAL is a YOLOv5-based deep learning supervised approach to automate the detection of fluids emitted from the seafloor (e.g. methane bubbles from cold seeps and liquid carbon dioxide from volcanic sites). It concerns the detection of fluids in water column images (echograms) acquired with multibeam echosounders.  Several thousand annotated echograms from different seas and oceans acquired  during distinct surveys were used to train and test the deep learning model (Table 1). The tests were conducted on a dataset comprising hundreds of thousands of echograms i) acquired with three different multibeam echosounders (Kongsberg EM302 and EM122 and Reson Seabat 7150) and ii) characterized by variable water-column noise conditions related to sounder artefacts and the presence of biomass (e.g. fish, dolphins).

This dataset contains models trained for fluid detection issued from several multibeam echosounders (Kongsberg EM122, EM302, Reson Seabat 7150) (Table 2). This fluid detector was already used for near-real time acquisition detection during the MAYOBS23 (EM122 – 2022; Perret et al. 2023) and HAITI-TWIST (Seabat Reson 7150 - 2024) cruises.

Inference code (YOLOv5 with G3D files) is available on github repository.

Disciplines

Cross-discipline

Keywords

Multibeam echosounder, Deep Learning, Fluid emission, You Only Look Once (YOLO), Automated Processing, Water Column Data, Underwater acoustic

Devices

Multibeam dataset used for training and testing with indication of the acquisition parameters and the acoustic and environmental conditions.

                Dataset

Key information

GAZCOGNE1

GHASS2 (LEG1)

MAYOBS23 (Horseshoe area used for inference)

PAMELA-MOZ1

Area

Aquitaine Basin

(Bay of Biscay)

offshore Romania

(Black Sea)

offshore Mayotte

(Indian Ocean)

Mozambique Channel

(Indian Ocean)

Survey date

July-August

2013

August-September

2021

July

2022

September-October

2014

Multibeam echosounder

Kongsberg EM302

Reson Seabat 7150

Kongsberg EM122

Kongsberg EM122

Frequency range (kHz)

28.25-29.50

22.50-24.50

11.75, 11.875

12-12.125

Number of beams

288

880

288

288

Water column sampling frequency (Hz)

203-1623

100-500

202-505

78-202

Mean depth and std (m)

532 ± 354

1022 ± 452

1479 ± 410

2992 ±860

Type of fluid emissions

Cold seeps

Cold seeps

Volcanic emissions

Cold seeps

Fluid nature Gaseous CH4 Gaseous CH4 Liquid CO2 Gaseous CH4

Acoustic and environmental conditions

multiple transmission sectors, presence of biomass

presence of dolphins, strong backscattering from the seabed

multiple transmission sectors, strong noise level under the minimum slant range

multiple transmission sectors, interference with subbottom profiler and coring operations

 

YOLOv5-based models for fluid detection.

                            Cruise

Name of the model

GAZCOGNE1

GHASS2 (LEG1)

MAYOBS21

PAMELA-MOZ1

BEST COMBINED ON PAMELA-MOZ1 X X   X
BEST COMBINED ON MAYOBS23 X X X  
BEST MONO-CRUISE ON GAZCOGNE1 X      
BEST MONO-CRUISE ON GHASS2 X      
BEST COMBINED ON GAZCOGNE1 X X    
BEST COMBINED ON GHASS2 X X    

 

Data

FileSizeFormatProcessingAccess
BEST COMBINED ON PAMELA-MOZ1
13 Mo.ptProcessed data
BEST COMBINED ON MAYOBS23
13 Mo.ptProcessed data
BEST MONO-CRUISE ON GAZCOGNE1
14 Mo.ptProcessed data
BEST MONO-CRUISE ON GHASS2
14 Mo.ptProcessed data
BEST COMBINED ON GAZCOGNE1
14 Mo.ptProcessed data
BEST COMBINED ON GHASS2
13 Mo.ptProcessed data
How to cite
Perret Tymea, Le Chenadec Gilles, Gaillot Arnaud, Ladroit Yoann, Dupré Stéphanie (2025). YOLO-WAL: Fluid emission detection by Water-column Acoustics and a deep Learning-approach. SEANOE. https://doi.org/10.17882/103478

Copy this text