8-class segmentation masks by high-quality manual pixel-by-pixel annotations, corresponding 3500 beach litter images from 2011 to 2019 in Yamagata Prefecture, Japan. (papers are under review)
Disciplines
Environment
Keywords
Beach litter, Marine plastics, Beach monitoring, Deep learning, Image segmentation, AI
Sugiyama Daisuke, Hidaka Mitsuko, Matsuoka Daisuke, Murakami Koshiro, Kako Shin’ichiro (2022). The BeachLitter Dataset v2022. SEANOE. https://doi.org/10.17882/85472
In addition to properly cite this dataset, it would be appreciated that the following work(s) be cited too, when using this dataset in a publication :
Sugiyama Daisuke, Hidaka Mitsuko, Matsuoka Daisuke, Murakami Koshiro, Kako Shin'ichiro (2022). The BeachLitter dataset for image segmentation of beach litter. Data in Brief, 42, 108072-. https://doi.org/10.1016/j.dib.2022.108072
Copy this text
Related documents
Barra Paola, Citarella Alessia Auriemma, Orefice Giosué, Castrillón-Santana Modesto, Ciaramella Angelo (2023). LOTS: Litter On The Sand dataset for litter segmentation. 2023 18th International Conference on Machine Vision and Applications (MVA). https://doi.org/10.23919/MVA57639.2023.10216220
Sugiyama Daisuke, Hidaka Mitsuko, Matsuoka Daisuke, Murakami Koshiro, Kako Shin'ichiro (2022). The BeachLitter dataset for image segmentation of beach litter. Data in Brief, 42, 108072-. https://doi.org/10.1016/j.dib.2022.108072